Elastic Constants of Mantle Minerals at High Temperature

Quan Liu · Qing He

Received: 10 May 2007 / Accepted: 10 July 2008 / Published online: 29 July 2008 © Springer Science+Business Media, LLC 2008

Abstract A simple theoretical model is developed to investigate the temperature dependence of elastic constants. The method is based on a new expression for the temperature dependence of the bulk modulus and the formulation derived from Tallon's model. The proposed relationship is applied to study the elastic constants of the solids of significance to geophysics applications. The calculated values of elastic constants are found to show good agreement with available experimental data.

Keywords Bulk modulus · Elastic constants · High temperatures

1 Introduction

Because of their use in geophysical problems [1], the behavior of elastic constants as a function of temperature has attracted the attention of experimental investigators [2-4] as well as theoreticians [5-8]. The theoretical attempts made in various studies are of two kinds. One methodology depends on the theory of interionic potentials, whereas the other is entirely free from the use of interionic potentials. It has been observed that the methods based on the theory of interionic potentials, either two-body or threebody, are very tedious [5-8], and involve a considerable amount of computational work in addition to various approximations. Thus, it is useful to propose a simple and

Q. Liu (🖂)

Q. He

Department of Physics, Anhui University, Hefei 230039, China e-mail: quanliu@ah172.com.cn

Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China

straightforward method for predicting high-temperature elastic constants, which is the purpose of the present paper.

In the present paper, combining a new expression for the temperature dependence of the bulk modulus with the formulation derived from Tallon's model [9], we present elastic constants at high temperature for ten solids, including silicates, oxides, and alkali halides. The results are found to yield close agreement with the available experimental data.

2 Method of Analysis

The isothermal Anderson–Grüneisen parameter connects the thermoelastic and thermodynamic properties in the following way [10]:

$$\delta_T = -\frac{1}{\alpha B_T} \left(\frac{\partial B_T}{\partial T} \right)_P,\tag{1}$$

where α is the volume expansion coefficient or thermal expansivity and B_T is the thermoelastic constant, known as the isothermal bulk modulus.

The mathematical definition of the volume thermal expansion coefficient or the volume thermal expansivity can be expressed as follows:

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P.$$
⁽²⁾

By using Eqs. 1 and 2, we get

$$\delta_T = -\frac{V}{B_T} \left(\frac{\partial B_T}{\partial V}\right)_P. \tag{3}$$

It is recommended [9] that Eq. 3 can be generalized to be applicable for any elastic modulus. Thus, the following expression represents the generalized form of Eq. 3:

$$\delta_T = -\frac{V_0}{M} \left(\frac{\partial M}{\partial V}\right)_P,\tag{4}$$

where *M* represents any of the elastic moduli, such as C_{11} , C_{12} , C_{44} , C_S , or B_S . Here C_{11} and C_{12} are the second-order elastic moduli, $C_S = (C_{11} - C_{12})/2$ is the shear modulus, and $B_S = (C_{11} + 2C_{12})/3$ is the adiabatic bulk modulus.

A method to estimate the temperature dependence of the bulk modulus has been developed with approximation that α depends linearly on temperature [11]. But we find that, for the case of NaCl for which experimental results have been reported, the values of B_T calculated in Ref. [11] are adequate for small expansions. The percentage differences increase with increasing temperature and become 9.75% at the melting point. Thus, the approximation that α depends linearly on temperature is valid only for small expansions that are in the low-temperature range.

Through comparisons and analysis of some experimental data, this paper proposes that α depends quadratically on temperature, which can be written as follows:

$$\alpha = \alpha_0 + \alpha'_0 \left(T - T_0 \right) + \frac{\alpha''_0}{2} \left(T - T_0 \right)^2, \tag{5}$$

where α_0 is the value of α at T_0 . α'_0 and α''_0 are, respectively, the first- and second-order temperature derivatives of α at initial temperature $T = T_0 = 300$ K. If one assumes the product αB_T remains constant [12], then we get, from Eq. 1, the following approximate formulation:

$$\delta_T = \frac{1}{\alpha^2} \left(\frac{\partial \alpha}{\partial T} \right)_P. \tag{6}$$

Assuming δ_T to be independent of T [12], we can get the following relations:

$$\alpha_0' = \left(\frac{\partial \alpha}{\partial T}\right)_P = \delta_{T_0} \alpha_0^2 \tag{7}$$

and

$$\alpha_0^{\prime\prime} = \left(\frac{\partial^2 \alpha}{\partial T^2}\right)_P = 2\delta_{T_0}^2 \alpha_0^3,\tag{8}$$

where δ_{T_0} is the value of δ_T at T_0 and at atmospheric pressure, i.e., at P = 0. So Eq. 5 can be rewritten as follows:

$$\alpha = \alpha_0 + \delta_{T_0} \alpha_0^2 \left(T - T_0 \right) + \delta_{T_0}^2 \alpha_0^3 \left(T - T_0 \right)^2.$$
(9)

Substituting the value of α from Eq. 9 in Eq. 1, we get

$$\frac{\mathrm{d}B_T}{B_T} = -\delta_{T_0} [\alpha_0 + \delta_{T_0} \alpha_0^2 (T - T_0) + \delta_{T_0}^2 \alpha_0^3 (T - T_0)^2] \mathrm{d}T.$$
(10)

Integrating Eq. 10, we finally get the following expression for $B_T(T)$:

$$\frac{B_T}{B_{T_0}} = \exp\left\{-\delta_{T_0}\alpha_0 \left(T - T_0\right)\left[1 + \frac{1}{2}\delta_{T_0}\alpha_0 \left(T - T_0\right) + \frac{1}{3}\delta_{T_0}^2\alpha_0^2 \left(T - T_0\right)^2\right]\right\}, (11)$$

where B_{T_0} is the value of B_T at initial temperature $T = T_0 = 300$ K and at atmospheric pressure.

Equation 11 may be used to determine the temperature dependence of elastic constants. Following the method of generalization as used by Tallon [9] to get Eq. 4, we can generalize Eq. 11 as follows:

$$\frac{M}{M_0} = \exp\left\{-\delta_{M_0}\alpha_0 \left(T - T_0\right) \left[1 + \frac{1}{2}\delta_{M_0}\alpha_0 \left(T - T_0\right) + \frac{1}{3}\delta_{M_0}^2\alpha_0^2 \left(T - T_0\right)^2\right]\right\}$$
(12)

🖄 Springer

Table 1	Values of input par	rameters [2]; α_0 in 10^{-6}	K ⁻¹							
	Pyrope-rich garnet	Grossular garnet garnet	MgAl ₂ O ₄	MnO	NaCl	Olivine Fe90Fa ₁₀	Fe ₂ SiO ₄	Mn ₂ SiO ₄	Co ₂ SiO ₄	Al ₂ O ₃
α_0	23.6	19.2	21.1	34.6	118	26.6	26.1	22.7	22.7	16.2
\$ 110	5	6.3	6.08	7.4	6.27	3.7	6.2	5.9	4.9	5.8
δ 120	4.5	2.1	5.95	0.061	0.051	6.2	7.2	7.6	7.76	0.56
8 440	4	5.7	4.7	3.1	2.34	7.4	2.4	8.4	5.4	10.35
δ 220						6.01	8.05	7.2	5.1	
8 230						3.65	2.65	5.35	6.35	
\$ 310						5.4	3.4	6.4	7.6	
8 330						5.7	7.5	6.1	6.12	4.25
8550						6.2	2.2	7.24	7.18	
<i>§</i> 660						7.64	10.65	10.67	7.65	
δ 130										5.82
δ140										-5.48

$10^{-6}{\rm K}^{-1}$
ц.
$[2]; \alpha_0$
parameters
Values of input
le 1

Here δ_{M_0} is given by Eq. 1 as defined by Kumar and Bedi [13]. The values of these constants (δ_{M_0}) are calculated from the measure values of $(\partial M/\partial T)_0$ as given in Table 1 along with the other input data.

3 Results and Discussion

In order to judge the suitability of Eq. 11, we have calculated the values of B_T as a function of temperature and compared the results (Table 2) with experimental data. The results obtained from Ref. [11] are also included in Table 2 for the purpose of comparison. We note that the values of B_T calculated from Eq. 11 are in close agreement with experimental data. Thus, Eq. 11 proposed by the authors seems to be suitable for the temperature dependence of the bulk modulus. Equation 11 may be generalized in the form of Eq. 12. Equation 12 is used to compute the temperature dependence of elastic moduli. We calculated the values of elastic moduli such as C_{11} , C_{12} , C_{44} , C_S , or B_S of ten solids of significance to geophysics. The results thus obtained are given in Tables 3–12 along with the experimental data [2].

The results obtained for the elastic constants for these ten solids under study present reasonably good agreement with the available experimental data [2]. The nature

<i>T</i> (K)	B_T		
	Ref. [11]	This work	Exp. [2]
300	240.0	240.0	240.0
400	219.7	223.2	224.1
500	199.9	206.3	205.0
600	18.09	189.6	188.0
700	151.2	172.9	174.0
800	145.6	156.6	156.0
900	128.8	140.6	140.9
$T_m (1,050 \mathrm{K})$	107.4	117.5	119.0
Percentage deviation at T_m	9.75 %	1.26 %	

Table 2 Values of bulk modulus B_T (in kbar) at different temperatures T for NaCl ($\delta_{T_0} = 5.95$ [11])

 Table 3
 Pyrope-rich garnet: calculated values of elastic moduli (in GPa) at different temperatures along with the experimental data [2] obtained under adiabatic conditions

T (K)	<i>C</i> ₁₁		<i>C</i> ₁₂		<i>C</i> ₄₄		C_S		B_S	
	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]
300	296.6	296.6	108.5	108.5	91.6	91.6	94.0	94.0	171.2	171.2
400	293.1	292.7	107.3	106.9	90.7	90.8	92.9	92.9	169.3	168.9
600	286.1	285.5	105.0	104.6	89.0	89.1	90.5	90.5	165.4	164.9
800	279.1	278.5	102.7	102.1	87.3	87.4	88.2	88.0	161.5	161.3
1,000	272.1	271.2	100.4	100.3	85.5	85.5	85.8	85.5	157.7	157.3

T (K)	<i>C</i> ₁₁		<i>C</i> ₁₂		C44		C_S		B_S	
	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]
300	318.9	318.9	92.2	92.2	102.9	102.9	113.4	113.4	167.8	167.8
500	311.9	311.7	91.5	91.5	100.8	100.4	110.2	110.1	164.9	164.9
700	304.9	303.8	90.7	90.5	98.8	98.7	107.1	106.6	162.1	161.6
900	298.0	296.5	90.0	90.2	96.7	96.5	104.0	103.2	159.3	158.9
1,100	291.0	289.1	89.2	89.8	94.7	94.2	100.9	99.7	156.5	156.2
1,300	284.0	280.5	88.5	88.7	92.6	91.8	97.8	96.0	153.7	152.6

 Table 4
 Grossular garnet: calculated values of elastic moduli (in GPa) at different temperatures along with the experimental data [2] obtained under adiabatic conditions

 $\begin{array}{l} \textbf{Table 5} \quad MgAl_2O_4: \mbox{ calculated values of elastic moduli (in GPa) at different temperatures along with the experimental data [2] obtained under adiabatic conditions \end{array}$

T (K)	C_{11}		C_{12}		C_{44}		C_S		B_S	
	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]
300	292.2	292.2	168.7	168.7	156.5	156.5	61.8	61.8	209.9	209.9
400	288.5	288.6	166.6	166.3	154.9	155.3	60.9	61.1	207.2	207.1
600	281.0	281.1	162.3	161.9	151.8	152.2	59.3	59.6	201.9	201.6
800	273.5	273.3	158.1	157.7	148.7	149.2	57.7	57.8	196.6	196.2
1,000	266.8	266.0	153.6	154.0	145.6	146.1	56.0	56.0	191.2	191.3

 Table 6
 MnO: calculated values of elastic moduli (in GPa) at different temperatures along with the experimental data [2] obtained under adiabatic conditions

T (K)	<i>C</i> ₁₁		<i>C</i> ₁₂		C ₄₄		C_S		B_S	
_	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]
300	223.5	223.5	111.8	111.8	78.1	78.1	55.9	55.9	149.0	149.0
350	220.6	220.4	111.8	111.8	77.7	78.1	54.4	54.3	148.1	148.0
400	217.8	217.2	111.8	111.8	77.3	77.8	53.0	52.7	147.1	146.9
450	214.9	214.1	111.8	111.7	76.8	77.3	51.6	51.2	146.1	145.8
500	212.1	210.9	111.8	111.7	76.0	76.5	50.2	49.6	145.2	144.8

 Table 7
 NaCl: calculated values of elastic moduli (in GPa) at different temperatures along with the experimental data [2] obtained under adiabatic conditions

T (K)	<i>C</i> ₁₁		<i>C</i> ₁₂		C44		C_S		B_S	
	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]
300	49.5	49.5	13.2	13.2	12.79	12.79	18.1	18.1	25.3	25.3
350	47.7	47.6	13.20	13.3	12.61	12.62	17.3	17.1	24.7	24.8
450	44.0	44.1	13.19	13.5	12.26	12.26	5.4	15.3	23.5	23.7
550	40.4	40.5	13.18	13.5	11.91	11.90	13.6	13.5	22.3	22.5
650	36.7	37.0	13.17	13.1	11.55	11.52	11.8	11.9	21.0	21.1
750	33.2	33.7	13.16	12.9	11.20	11.10	10.0	10.4	19.8	19.8

T (K)	C ₁₁		C22		C ₃₃		C44		C ₅₅		C ₆₆		C ₂₃		C ₃₁		C ₁₂	
	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	2	Eq. 12	5	Eq. 12	5	Eq. 12	2	Eq. 12	2	Eq. 12	2
300	320.6	320.6	197.1	197.1	234.2	234.2	63.7	63.7	77.6	77.6	78.3	78.3	74.8	74.8	71.2	71.2	69.8	69.8
500	312.4	313.0	190.8	190.9	227.1	227.6	61.2	61.0	75.0	74.9	75.1	74.9	73.3	73.7	69.2	69.3	67.5	67.4
700	304.2	305.0	184.5	184.6	220.0	220.6	58.7	58.4	72.5	72.3	71.9	71.7	71.9	72.3	67.1	67.2	65.2	65.0
900	296.0	297.0	178.2	178.3	212.9	214.3	56.2	55.9	66.69	6.69	68.7	68.5	70.4	71.2	65.1	66.0	62.9	62.8
1,100	287.8	289.0	171.9	172.3	205.8	206.6	53.7	53.4	67.4	67.1	65.6	65.5	69.0	69.4	63.0	63.4	60.6	60.5
1,300	279.6	280.9	165.7	166.1	198.7	199.3	51.2	51.0	64.8	64.5	62.4	62.5	67.5	67.8	61.0	61.4	58.3	58.2
1,500	271.4	272.0	159.4	159.8	191.7	192.1	48.7	48.5	62.7	62.2	59.2	59.5	66.1	66.4	58.9	59.8	56.0	56.2

Table 8 Olivine Fe₉₀Fa₁₀: calculated values of elastic moduli (in GPa) at different temperatures along with the experimental data [2] obtained under adiabatic conditions

	I							I										
T (K)	c_{11}		C_{22}		C_{33}		C_{44}		C_{55}		C_{66}		C_{23}		C_{31}		C_{12}	
	Eq. 12	[]	Eq. 12	[]	Eq. 12	[2]	Eq. 12	<mark>]</mark>	Eq. 12	[7]	Eq. 12	[2]	Eq. 12	5	Eq. 12	[]	Eq. 12	7
300	266.9	266.9	173.5	173.5	239.1	239.1	32.4	32.4	46.7	46.7	57.3	57.3	97.9	97.9	98.7	98.7	95.1	95.1
400	262.9	262.2	169.9	170.1	234.4	234.7	32.2	31.7	46.4	46.0	55.7	55.3	97.2	97.4	97.8	<i>T.</i> 70	93.3	93.4
500	259.0	258.8	166.3	166.6	229.7	229.9	32.0	31.4	46.2	45.8	54.1	53.7	96.5	96.8	96.9	97.0	91.5	91.9
009	255.0	255.0	162.6	162.8	225.1	225.1	31.8	31.5	45.9	45.6	52.5	52.3	95.9	96.0	96.1	96.1	89.7	90.0
700	251.0	251.0	159.0	159.0	220.4	220.5	31.9	31.6	45.6	45.5	50.9	51.0	95.2	94.8	95.2	94.9	88.0	87.7

ons
on
0
. E
Ξ.
2
I
ĸ
<u> </u>
·=
g
<u> </u>
<u>a</u>
-8
ĕ
5
-3
ã
1
2
g
·=
g
5
1
0
_
<u>C</u>
_
5
а
р
_
à
I
G
č
n
. 🗆
Ð
b
×
e
d)
Ĕ
ť
F
t
.2
>
50
e
5
а
ŝ
e
H
3
a
÷
ē
d.
R
5
Ĕ
÷
L L
e)
5
Ľ
99
Ë
dif
at dif
at dif
a) at dif
Pa) at dif
JPa) at dif
GPa) at dif
n GPa) at dif
in GPa) at dif
(in GPa) at dif
i (in GPa) at dif
uli (in GPa) at dif
luli (in GPa) at dif
oduli (in GPa) at dif
noduli (in GPa) at dif
moduli (in GPa) at dif
c moduli (in GPa) at dif
iic moduli (in GPa) at dif
stic moduli (in GPa) at dif
astic moduli (in GPa) at dif
elastic moduli (in GPa) at dif
elastic moduli (in GPa) at dif
of elastic moduli (in GPa) at dif
of elastic moduli (in GPa) at dif
ss of elastic moduli (in GPa) at dif
les of elastic moduli (in GPa) at dif
lues of elastic moduli (in GPa) at dif
alues of elastic moduli (in GPa) at dif
values of elastic moduli (in GPa) at dif
1 values of elastic moduli (in GPa) at dif
ed values of elastic moduli (in GPa) at dif
ted values of elastic moduli (in GPa) at dif
lated values of elastic moduli (in GPa) at dif
ulated values of elastic moduli (in GPa) at dif
culated values of elastic moduli (in GPa) at dif
ulculated values of elastic moduli (in GPa) at dif
calculated values of elastic moduli (in GPa) at dif
calculated values of elastic moduli (in GPa) at dif
t: calculated values of elastic moduli (in GPa) at dif
04: calculated values of elastic moduli (in GPa) at dif
O4: calculated values of elastic moduli (in GPa) at dif
siO4: calculated values of elastic moduli (in GPa) at dif
SiO4: calculated values of elastic moduli (in GPa) at dif
$^{2}_{2}SiO_{4}$: calculated values of elastic moduli (in GPa) at dif
⁷ e ₂ SiO ₄ : calculated values of elastic moduli (in GPa) at dif
Fe ₂ SiO ₄ : calculated values of elastic moduli (in GPa) at dif
Fe ₂ SiO ₄ : calculated values of elastic moduli (in GPa) at dif
9 Fe ₂ SiO ₄ : calculated values of elastic moduli (in GPa) at dif
e 9 Fe ₂ SiO ₄ : calculated values of elastic moduli (in GPa) at dif
We 9 Fe ₂ SiO ₄ : calculated values of elastic moduli (in GPa) at dif
ble 9 Fe ₂ SiO ₄ : calculated values of elastic moduli (in GPa) at dif
able 9 $\operatorname{Fe}_2\operatorname{SiO}_4$: calculated values of elastic moduli (in GPa) at dif

Table 1	0 Mn ₂ Si	O4: calcu	ılated valu	ies of elasi	tic moduli	(in GPa)	at differer	it tempe	ratures alc	ng with	the exper	imental c	lata [<mark>2</mark>] ol	btained u	nder adia	batic cor	nditions	
T (K)	c_{11}		C22		C_{33}		C_{44}		C_{55}		C_{66}		C ₂₃		C_{31}		C_{12}	
	Eq. 12	2	Eq. 12	[7]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	2	Eq. 12	2	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	2
300	258.3	258.3	165.5	165.5	206.7	206.7	45.3	45.3	55.6	55.6	57.8	57.8	91.7	91.7	95.2	95.2	87.1	87.1
400	254.8	254.8	162.8	162.7	203.8	203.9	44.4	44.4	54.7	54.4	56.4	56.4	90.6	90.6	93.8	93.8	85.6	85.5
500	251.4	251.3	160.1	159.8	201.0	201.0	43.6	43.5	53.8	52.3	55.0	53.8	89.5	93.4	92.4	93.2	84.1	85.1
009	247.9	247.8	157.4	157.0	198.1	198.2	42.7	42.5	52.9	52.0	53.6	53.7	88.4	88.3	91.1	90.8	82.6	82.2
700	244.5	244.3	154.7	154.2	195.3	195.3	41.8	41.5	52.0	51.8	52.2	52.4	87.2	87.2	89.7	89.4	81.1	80.6

	1							•)	•							
r (K)	C ₁₁		C_{22}		C ₃₃		C44		C_{55}		C_{66}		C_{23}		C_{31}		C_{12}	
	Eq. 12	[2]	Eq. 12	5	Eq. 12	[]	Eq. 12	<mark>]</mark>	Eq. 12	<mark>]</mark>	Eq. 12	5	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	3
800	307.7	30707	194.7	194.7	234.1	234.1	46.7	46.7	63.9	63.9	64.8	64.8	103.2	103.2	105.0	105.0	101.6	101.6
00	304.3	304.0	192.4	192.6	230.9	230.7	46.1	46.2	62.9	62.9	63.7	63.8	101.7	101.8	103.5	103.6	99.8	9.66
009	300.9	301.1	190.2	190.5	227.6	227.4	45.6	45.7	61.8	61.9	62.5	62.8	100.2	100.5	102.1	102.3	98.0	97.9
009	297.4	297.8	187.9	188.6	224.4	224.0	45.0	45.2	60.8	60.8	61.4	61.8	98.7	99.1	100.6	100.9	96.3	96.1
002	294.0	294.5	185.7	186.2	221.1	220.6	44.4	44.7	59.7	59.8	60.3	60.8	97.2	97.8	99.2	9.66	94.5	94.3

Table 11 Co₂SiO₄: calculated values of elastic moduli (in GPa) at different temperatures along with the experimental data [2] obtained under adiabatic conditions

Table 12	Al ₂ O ₃ : calcu	llated values o	of elastic modu	li (in GPa) at e	different temp	eratures along	with the expe	rrimental data	[2] obtained u	under adiabati	ic conditions	
T (K)	C ₁₁		C ₃₃		C ₄₄		C ₁₂		C ₁₃		C_{14}	
	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]	Eq. 12	[2]
300	497.2	497.2	500.8	500.8	146.7	146.7	162.8	162.8	116.0	116.0	-21.9	-21.9
600	483.2	486.0	486.3	489.2	139.3	139.2	162.4	163.1	112.7	113.0	-22.5	-23.3
006	469.2	472.3	471.8	476.0	131.9	131.2	161.9	162.4	109.4	109.6	-23.1	-23.9
1,200	455.2	457.3	457.3	461.1	124.6	123.2	161.5	160.7	106.2	105.4	-23.7	-24.3
1,500	441.2	442.2	442.8	446.4	117.2	115.1	161.0	159.4	102.9	101.6	-24.2	-24.5
1,800	427.2	427.2	428.4	432.5	109.9	107.4	160.6	158.0	9.66	99.1	-24.8	-24.5

of these results reveals the validity of the exponential dependence as represented by Eq. 11 for different elastic moduli. It can be concluded that the present assumption that α depends quadratically on temperature is more logical and physically realistic.

Because of the difference between δ_{S_0} and δ_{T_0} , B_T and B_S show very different temperature dependences. For the case of NaCl, the calculated values of B_T at different temperatures are reported in Table 2, and the calculated values of B_S are reported in Table 10. The variation of B_T with temperature is found to be large as compared with B_S .

In summary, we have presented a simple method in order to determine the temperature dependence of the elastic properties of solids. Ten solids are presented as examples because the required experimental data are readily available here, permitting direct comparisons. The simplicity of the method lies in the fact that it does not involve the use of a two- or three-body potential, thus permitting investigations of the elastic properties of more complex materials at higher temperature where experimental data are not available.

Acknowledgments This work has been financially supported by the Key Laboratory of Opto-electronic Information Acquisition and Manipulation of Ministry of Education of China (No. 9603).

References

- O.L. Anderson, Equation of State of Solids for Geophysics and Ceramic Science (Oxford University Press, Oxford, 1995)
- O.L. Anderson, D.G. Isaak, Elastic constants of mantle minerals at high temperature, in *Mineral Physics and Crystallography: A Handbook of Physical Constants*, ed. by T.J. Ahrens (American Geophysics Union, Washington, DC, 1995)
- 3. D.G. Isaak, I. Ohno, Phys. Chem. Miner. 30, 430 (2003)
- S.V. Sinogeikin, D.L. Lakshtanov, J.D. Nicholas, J.M. Jackson, J.D. Bass, J. Eur. Ceram. Soc. 25, 1313 (2005)
- 5. U.C. Shrivastava, Phys. Rev. B 21, 2602 (1980)
- 6. R.J. Wolf, K.A. Mansour, M.W. Lee, J.R. Ray, Phys. Rev. B 46, 8027 (1992)
- 7. X.F. Li, X.R. Chen, C.M. Meng, G.F. Ji, Solid State Commun. 139, 197 (2006)
- 8. J.J. Zhao, J.M. Winey, Y.M. Gupta, Phys. Rev. B 75, 094105 (2007)
- 9. J.L. Tallon, J. Phys. Chem. Solids 41, 837 (1980)
- 10. O.L. Anderson, D.G. Isaak, J. Phys. Chem. Solids 54, 221 (1993)
- 11. M. Kumar, Physica B 205, 175 (1995)
- 12. J. Shanker, M. Kumar, Phys. Status Solidi B 179, 351 (1993)
- 13. M. Kumar, S.S. Bedi, High Temp. High Press. 27-28, 595 (1995-1996)